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Physical and mathematical considerations are presented in support of the suggestion that social hornets and
bees, which construct brood combs with large arrays of cells in a honeycomb structure, exploit ultrasonic
acoustic resonances in those cells in order to achieve the great accuracy of the hexagonal symmetry exhibited
by these honeycomb-structured arrays. We present a numerical calculation of those resonances for the case of
a perfect-hexagon duct utilizing a Bloch-Floquet-type theorem. We calculate the rate of energy dissipation in
those resonances and use that, along with other considerations, to identify the resonance that is best suited for
the suggested use by bees and hornets. Previously recorded ultrasonic data on social hornets and honeybees are
cited which agree with some of our predictions and thus provide support for the above-mentioned suggestion.
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I. INTRODUCTION

In a previous paper, it was suggested that social hornets
and bees might exploit a lateral ultrasonic acoustic resonance
in the construction of their brood combs �1�. By adjusting
such a resonance in one comb cell to be twofold degenerate,
they could ensure that the cell has an accurate perfect-
hexagon cross section. Also, by adjusting two adjacent cells
to have the same resonance frequency, they could ensure that
those cells have cross sections of the same size. Quantitative
estimates of the possible resonance frequencies in the case of
an oriental hornet comb were obtained by taking the cell
cross section to be a circle, instead of the actual perfect-
hexagon shape. The expectation was that the resonance used
by those hornets has a frequency of about 20 kHz.

In this paper we present some results which provide more
evidence in support of the above-mentioned suggestion: we
describe results of computations on cells with the correct
perfect-hexagon shape and calculate the energy dissipation
from those results. From purely mathematical and physical
considerations, we identify one lateral resonance which is
best suited for the uses that were suggested in Ref. �1�. We
present some evidence that the same resonance mode is also
used by honeybees in the construction of their brood combs.
In that case, the actual resonance frequency will be higher,
i.e., in the range of 35–40 kHz. That is because the honeybee
comb cells are somewhat smaller than those of the oriental
hornet.

In Sec. II we briefly describe the main elements of our
numerical computation and present its most important results

where the air is modeled as an ideal fluid, the ducts are
infinitely long, and the duct walls are perfectly rigid and
smooth. In Sec. III we discuss a more realistic model where
the air is a real fluid, with viscosity and heat conductivity,
and the duct walls are rough, and present some calculations
of the energy dissipation. In Sec. IV we discuss the conse-
quences which follow from those results vis-à-vis the exploi-
tation by hornets and bees of ultrasonic resonances in indi-
vidual comb cells. In Sec. V we summarize our main results
and discuss what needs to be done in order to test our pre-
dictions.

II. LATERAL ACOUSTIC RESONANCE IN A PERFECT-
HEXAGON DUCT FILLED WITH IDEAL FLUID

The lateral acoustic resonances in a cell with a constant
perfect-hexagon cross section can be described by writing
the following form for the space- and time-dependent pres-
sure oscillations in the cell, the axis of which is taken to be
the z-coordinate axis �c is the velocity of sound in air�:

pmn��,�,t� = eim�−ic�mnt�mn��,�� , �2.1�

where

m = 0, � 1, � 2,3, n = 1,2, . . . .

Here we are using cylindrical coordinates �� ,� ,z� around the
cell axis. The appearance of the complex exponential func-
tion eim� is a consequence of the hexagonal symmetry in the
xy plane: the invariance of the perfect hexagon under rota-
tion by � /3 rad around the z axis leads to a Bloch-Floquet-
type theorem which forces the wave function �mn�� ,�� to be
periodic in the azimuthal angle � with a period of � /3 rad.
We assume that the air in the cell behaves as an ideal fluid
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and that the cell walls are infinitely rigid and smooth. Then
the function eim��mn�� ,�� is an eigenfunction of the two-
dimensional �2D� Helmholtz equation,

� �2

�x2 +
�2

�y2 + �mn
2 �eim��mn��,�� = 0 �2.2�

with Neumann boundary conditions �i.e., vanishing of the
normal derivative� on the edges of a perfect hexagon. Each
of these eigenstates represents a nonpropagating acoustic
mode in the cell, which lies at the bottom of an entire band
of propagating modes given by

eim�+i	mn�
�z−i
t�mn��,�� , �2.3�

where

	mn
2 �
� + �mn

2 =

2

c2 . �2.4�

Equation �2.2� with boundary conditions on a hexagon
cannot be simplified by separation of variables. We therefore
solved it numerically by discretizing the xy plane, using a
triangular grid of points and using the values of
eim��mn�� ,�� at those points in order to compute a finite
difference approximation for each of the partial derivatives
in that equation and in the boundary condition. This proce-
dure transforms the eigenvalue problem of Eq. �2.2� into a
standard eigenvalue problem of a finite Hermitian matrix,
whose size depends on the number of grid points. That ma-
trix eigenvalue problem was solved by a standard numerical
algorithm on a desktop personal computer. Details of this
procedure, as well as some of its surprising mathematical
aspects, will be described elsewhere �2�.

Some of the main properties of these eigenstates can be
seen by considering the low-lying normalized eigenvalues
a�mn �a is the edge length of the perfect hexagon� that are
listed in Table I. When normalized in this way, the eigenval-
ues a�mn are pure numbers that are independent of a. We
note that the eigenvalues �1n and �−1n are always exactly the
same. A similar situation holds for the eigenvalues �2n and
�−2n. This twofold degeneracy is a consequence of the

perfect-hexagon symmetry. It can also be understood by not-
ing that the eigenfunctions ei��1n and e2i��2n are necessarily
complex valued. Therefore their complex conjugates
e−i��1n

� �e−i��−1n and e−2i��2n
� �e−2i��−2n are eigenfunc-

tions that differ from the previous two but have the same
eigenvalues. By contrast, the eigenfunctions �0n and e3i��3n
are real valued, and their eigenvalues are not the same �note
that although the function �3n is complex valued and peri-
odic, the function e3i��3n is real valued and simply changes
its sign when �→�+� /3�. Both of the two lowest nonzero
eigenvalues, �11�2.0165 /a and �21�3.3052 /a, are twofold
degenerate and are well separated from each other and from
all of the higher eigenvalues. In Sec. IV we will argue that
this property of the lowest two eigenvalues makes them of
most interest for the application to comb construction. By
contrast, each of the higher eigenvalues is fairly close to,
sometimes even very close to, another eigenvalue �see, e.g.,
the pair �31 and �02 or the pair �12 and �22�.

Actually, because the twofold-degenerate Bloch-function
eigenmodes of Eq. �2.1� are complex-valued functions, they
cannot represent any possible physical resonance. A twofold-
degenerate resonance with real values of the pressure and the
velocity can be obtained as the real or imaginary part of
either one of those twofold-degenerate Bloch functions. The
resulting real eigenfunctions can be organized so as to be
either even or odd under reflection through any one of the six
lines of reflection symmetry of the perfect hexagon. In fact,
these six lines consist of three pairs of mutually perpendicu-
lar lines, where the two operators associated with any single
pair of reflection lines commute, while the operators result-
ing from different pairs of reflection lines do not commute.
Therefore the real-valued eigenfunctions can always be or-
ganized so as to be the eigenstates of any one of those pairs
of operators, but usually not of two pairs simultaneously.
Obviously, none of these functions will be a Bloch function,
but it will be an eigenfunction of the rotation by an angle �,
which is the same as space inversion through the origin, i.e.,
the transformation r→−r. An example is shown in Fig. 1,
where the two degenerate eigenfunctions of each of the two
lowest nonzero eigenvalues, namely, ��11 and ��21, are or-
ganized as real-valued functions that are either even or odd
under reflection through the midaxis of the exhibited tri-
angle.

It is interesting to compare the perfect-hexagon eigenval-
ues of Table I with the eigenvalues of Helmholtz equation
with Neumann boundary conditions on a circle of radius b.
These eigenvalues, denoted by �mn, are obtained from zeros
of the first derivative of the Bessel function Jm �1�,

Jm� ��mnb� = 0. �2.5�

Some of those eigenvalues are shown in Table II. They ex-
hibit similar properties to those described above for �mn:
both of the two lowest nonzero eigenvalues, �11�1.841 /b
and �21�3.054 /b, are twofold degenerate and are well sepa-
rated from each other and from all the higher eigenvalues.
Again, each of the higher eigenvalues is close to another
eigenvalue. This approximate degeneracy becomes more and
more pronounced with increasing n due to the mathematical
properties of the Bessel functions for large arguments, i.e.,

TABLE I. The lowest eigenvalues a�mn of Eq. �2.2� with Neu-
mann boundary conditions on a perfect hexagon. The degeneracy of
eigenvalues with m and −m is exact. Emphasized in boldface is the
lowest nonzero �degenerate� eigenvalue; its significance is ex-
plained in Sec. IV.

n a�0n a��1n a��2n a�3n

1 0 2.0165 3.3052 4.1967

2 4.2026 5.7543 5.7944 5.0019

3 7.2707 7.0763 7.4238 8.4015

4 8.3957 8.9869 9.8049 9.184

5 8.4813 9.8496 10.5929 11.0941

6 11.116 11.4358 11.3595 11.8618

7 12.5961 12.8575 12.6416 12.5965

8 13.0647 13.8157 13.9634 13.0466

9 14.5376 14.2964 14.6717 15.1391
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the fact that Jm�x�	x−1/2 cos�x−m �
2 − �

4 �. Also worth men-
tioning is the fact, which was expected previously, that each
of the lowest eigenvalues for the perfect hexagon lies in be-
tween that of the circumscribing circle �with radius b=a� and
that of the circumscribed circle �with radius b=
3a /2� �1�.

III. EFFECTS OF DISSIPATION

In real air, the acoustic resonance decays in time due to a
variety of processes that were hitherto neglected. One of
those is the energy dissipation due to nonideal fluid flow near
the boundary: for a nonideal fluid, both the normal and the
tangential velocities at the surface of the cell walls must
vanish. As a result, the velocity parallel to the wall increases
from zero at the wall up to its ideal fluid value over a viscous
penetration depth �5�. The rate of energy loss in this so-called
boundary layer is directly related to the tangential velocity
found at the boundary for an ideal fluid. The ideal fluid ve-
locity of each lateral mode at the wall can be obtained from
the tangential gradient �pmn /�x of the local pressure �see Eq.
�2.1�� and using Euler’s equation,

dvmn�r,t�
dt

= − i
mnvmn�r,t� = −
1

�

�pmn�r,t�
�x

, �3.1�

where x is the fluid coordinate parallel to the wall, � is the
fluid mass density, vmn�r , t� is the tangential velocity of the
mn eigenstate at the wall, and 
mn�c�mn is the angular fre-
quency of that eigenstate.

In the solution for a circular boundary, the tangential gra-
dient is just the projection of �pmn along the azimuthal unit
vector e�, and the tangential velocity can be calculated in a
simple closed form. Examining the two lowest normalized
acoustic modes, which are of most interest to us, p11 and p21,
it is easy to show that the tangential velocity of the latter is
almost twice as large as that of the former. This results from
the velocity amplitude being proportional to the m index and
to the peak value of Jm��mnr�.

In the case of a perfect-hexagon boundary condition, we
need to be somewhat more careful, even before we numeri-
cally compute the tangential pressure gradient �pmn /�x along
the straight wall segments: as explained in the previous sec-
tion, the physical resonance pressure pphys must be some
real-valued linear combination of Re�pmn� and Im�pmn�,
namely,

pphys = A Re�pmn� + B Im�pmn� . �3.2�

From this it follows that the physical value of the tangential
velocity vphys will be a similar combination, namely,

vphys =
1

�
mn
�− A Im� �pmn

�x
� + B Re� �pmn

�x
�� . �3.3�

By choosing a real time dependence of the form cos�
mnt
+��, the eigenfunction becomes a real time-dependent stand-
ing wave. In Fig. 2 we plot the amplitude of the tangential
velocity vs position along the circumference of the hexagon
for the four standing waves whose wave functions were plot-
ted in Fig. 1: the even and the odd �with respect to reflection
through �=� /6� standing waves of the �11 and �21 eigen-
values �4�. These standing waves are all normalized to 1 in
L2, i.e., their squared values integrate to 1 over the area of
the hexagon. It can be seen that the tangential velocity at the
boundary is lower for the eigenstates with the lower eigen-
value �11.

The value of the velocity at the boundary is very impor-
tant when attempting to estimate the width of the actual peak
in the frequency spectrum, namely, the sharpness of the reso-

(A) (B)0 −1

1

0.5 0

1

(D)(C) −1

0

1

−1

−0.5

0

FIG. 1. �Color online� Using an appropriate linear combination
of the Bloch-type eigenfunctions of the � /3 rotation operator, one
can construct solutions of the Helmholtz equation that are even or
odd under reflection through the midaxis of the triangle which con-
stitutes 1/6 of the perfect-hexagon cross section. Panels �A� and �B�
are the even and odd functions corresponding to the eigenvalue �11

�or �−11�, while panels �C� and �D� are the odd and even functions
corresponding to the eigenvalue �21 �or �−21�. For clarity, each of
those functions is normalized, so that its values span the entire
interval �0,1�, �−1,0�, or �−1,1�. Note that the extension of these
eigenfunctions to the other five triangular sections of the perfect
hexagon is nonperiodic �see, e.g., Fig. 2�.

TABLE II. The lowest eigenvalues b�mn of Eq. �2.2� with Neumann boundary conditions on a circle of
radius b �see Refs. �1,3� for details�. Eigenvalues with �m are degenerate. The relevance of the lowest
nonzero �degenerate� eigenvalue ��1,1, which is emphasized in boldface, is discussed in Sec. IV.

n b�0n b��1n b��2n b��3n b��4n b��5n

1 0 1.841 3.054 4.201 5.317 6.416

2 3.832 5.331 6.706 8.015 9.282 10.520

3 7.016 8.536 9.969 11.346 12.682 13.987

4 10.173 11.706 13.170 14.586 15.964 17.313

5 13.324 14.864 16.347 17.789 19.196 20.575
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nance. The width of the peak in frequency space is directly
related to the rate of energy loss due to dissipation. The
typical lifetime of a free oscillation can be expressed by the
ratio �5�


 =
Ē


Ėkin

, �3.4�

where Ėkin is the time averaged rate of �kinetic� energy loss

per unit volume due to dissipation and Ē is the time averaged
energy per unit volume in the system given by the expression

Ē =
1

2
��

V
v0

2�r�d3r , �3.5�

in which v0�r� is the local amplitude of the velocity field in
the ideal fluid.

In order to calculate the rate of energy dissipation in the
boundary layer, we treat the system as a nonideal fluid and
impose the correct boundary conditions under which both
normal and tangential velocities vanish at the wall. The tan-
gential velocity then changes from zero at the boundary to its
ideal fluid value over a thin viscous penetration depth given
by

��
� �
2�


�
, �3.6�

where � is the fluid shear viscosity. The rate of energy loss in
that boundary layer is given by the expression �5�


Ėkin
 =
1

2

1

2

���

�V
v0

2�r�d2r , �3.7�

in which the surface integral is taken over the fluid boundary
�V.

Using our numerical solution for the eigenfunctions, we
were able to calculate the full width at half maximum �
 of
the resonance peak as follows:

�
 � 
−1 =

�

2�

�
�V

v0
2�r�d2r

�
V

v0
2�r�d3r

�

�

2�

Amn

a
�

1

a3/2 ,

�3.8�

where Amn is a dimensionless quantity independent of a. By
numerical integration of our results for the velocity field, we
find A11=1.0123 for both the even and odd eigenfunctions
with the eigenvalue �11 �6�. This leads to the following esti-
mate for the relative width of that resonance due to viscous
dissipation in the boundary layer:

�
11


11
=
 1

2�

�11ac

1

a

A11 = 3.16 � 10−6 1

a

, �3.9�

where we used 
=
mn=c�mn, as well as the shear viscosity
of air at 300 K �see below�. The final result of Eq. �3.9�
assumes that the cell edge a is given in millimeters. Evi-
dently, the relative peak width is proportional to 1 /
a, while
the absolute peak width is proportional to a−3/2. Moreover,
by using Eqs. �3.6� and �3.8� we find that

��
mn�
a

=
4

Amn

�
mn


mn
�3.10�

Equation �3.10� allows us to verify our assumption of a thin
viscous penetration depth ��
mn��a for the lowest eigen-
states.

In fact, Eq. �3.8� only gives a lower bound for the width
of the resonance since there are other sources of dissipation
which can further attenuate the system response. Some of
those are the dissipation of acoustic oscillations in bulk air,
the penetration of those oscillations into the porous cell
walls, and interaction of lateral resonance modes with other
propagating acoustic modes via the nonperfect smoothness
and nonperfect rigidity of the cell walls. We now briefly
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FIG. 2. The ideal fluid tangential velocity amplitude of air, at the
walls of a perfect-hexagon cell, in the two lowest lateral normalized
eigenstates, v11 and v21, plotted vs the azimuthal coordinate � along
the wall, as obtained numerically from Eq. �3.3�. The eigenfunc-
tions are constructed so as to be real valued and are either even or
odd under reflection through the midaxis �=� /6 of the original
triangle. In agreement with the notation of Fig. 1, �A� and �B�
denote the odd and even velocity functions corresponding to the
eigenvalue �11 �or �−11�, while �C� and �D� denote the even and odd
velocity functions corresponding to the eigenvalue �21 �or �−21� �4�.
The solid vertical lines mark the position of the above-mentioned
reflection axis. The dashed vertical lines mark the position of the
other reflection axis in the commuting pair of reflection symmetries,
which is perpendicular to the previous one.
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discuss these effects in order to gauge their importance.
The broadening of the resonance peak, due to viscosity

and thermal conductivity of the bulk fluid, is given by �5�

�
bulk =

2

�c2�4

3
� + � + �� 1

CV
−

1

CP
�� , �3.11�

where � and � are the shear viscosity and bulk viscosity,
respectively; � is the thermal conductivity; and CV and CP
are the heat capacities at constant volume and constant pres-
sure. In order to evaluate Eq. �3.11� we use properties of dry
air at 300 K: CP=1.0049 kJ /kg K, CV=0.7178 kJ /kg K,
�=2.624�10−5 kW /m K, �=1.846�10−5 kg /m s, �
=1.177 kg /m3, and c=330 m /s. For the bulk viscosity we
use the results of Greenspan who showed that �=0.60� �7�.
The relative peak broadening for the acoustic mode p11, due
to dissipation of sound in bulk air, is thus found to be

��
11


11
�

bulk
=

�11

�c
�1.93� + �� 1

CV
−

1

CP
�� = 1.6 � 10−81

a
,

�3.12�

where a is again measured in mm. We note that the result is
proportional to 1 /a since �mna is independent of a. Compar-
ing Eqs. �3.9� and �3.12�, we find that the broadening of the
peak arising from the viscous boundary layer is greater than
the broadening due to viscosity and thermal conductivity in
bulk air for systems of linear size a�2.5�10−2 mm. In the
construction of a brood comb, as discussed in Sec. IV, the
size a is several millimeters and is thus well within that limit.
Therefore, bulk acoustic dissipation contributes a negligible
amount to the peak broadening, as compared to shear motion
in the viscous boundary layer.

The walls of the cell in a brood comb of hornets are
forged from a cement which the hornets make by mixing
cellulose fibers and gravel with their saliva �8,9�. Upon dry-
ing, this solidifies into a soft solid with small air-filled pores.
The motion of that air is strongly damped by viscosity and
friction with the pore walls. This provides a mechanism of
energy dissipation which cannot be addressed seriously with-
out knowing more details about the pore structure and the
penetration of the acoustic oscillations into the walls. Thus,
the result for resonance width given by Eq. �3.9� is actually
only a lower bound.

Each of the eigenvalues listed in Tables I and II represents
the nonpropagating mode which lies at the bottom of a band
of propagating modes �except for the band starting at zero,
since there is no mode at 
=0�. In other words, each lateral
mode is degenerate with propagating modes in bands that
start at a lower frequency. Due to the roughness and the
nonperfect rigidity of the walls, different modes can usually
interact and transfer energy to each other. Consequently, en-
ergy is carried outward by the propagating modes and this
weakens the resonant response of the lateral modes. This
applies to all the lateral resonances except the lowest one.
That mode only overlaps with the lowest band p01 of propa-
gating modes, which are longitudinal waves with frequencies
that start from 
=0. However, because these propagating
modes involve no lateral motion, they therefore do not inter-
act with lateral modes. Thus, p11 is the only lateral mode that

has no interaction with any propagating modes. We note that
the hidden assumption of an infinite duct is used for conve-
nience, but is not essential, since the lateral modes are non-
propagating modes. Any interaction of a lateral mode with
standing waves of a semiopen duct would also result in some
loss of energy to the outside.

IV. CONSEQUENCES FOR COMB CONSTRUCTION

In Sec. II we showed that the eigenvalues of some of the
nonpropagating acoustic modes of a perfect-hexagon-shaped
cell are twofold degenerate, as in the case of a circle. This
property can be utilized in order to evaluate the accuracy of
symmetry of the cross section along the main axis of a duct
in the following manner: by exciting a band of frequencies
around the eigenfrequency of a certain twofold-degenerate
mode and listening to the acoustic response, a perfectly sym-
metric cross section can be distinguished from a slightly de-
formed one. While the first exhibits a single harmonic re-
sponse, the latter results in the appearance of beats due to the
interference of the two slightly different response frequen-
cies. To be more specific, the C6v symmetry of the perfect
hexagon has two 2D irreducible representations, while any
deformed shape has only one-dimensional �1D� irreducible
representations �10�. Moreover, the only cell shapes that
have such 2D irreducible representations are the n-sided per-
fect polygons, namely, the shapes characterized by the Cnv
symmetry groups with n�2. Any shape with lower symme-
try, e.g., rectangles or nonperfect hexagons, has only 1D ir-
reducible representations. By a process of trial and error, the
shape of the cell can be fine tuned to exact perfect-hexagon
shape, much like how a piano tuner tunes a piano string by
listening to it beating against a vibrating tuning fork. We note
that although all the cyclic symmetry groups Cnv with n�2
have 2D representations, only the limited subset of the
n-sided polygons with n=3, 4, or 6 can be used for a regular
tessellation of the plane. Of these three shapes, the one that is
best suited for efficiently accommodating the body of a hor-
net or bee is the n=6 perfect-hexagon shape.

The resonance frequencies of the cells can also be used to
test for size difference of two adjacent cells: by exciting the
same mode in both cells and listening to the low-frequency
beats, the same process of trial and error can be applied until
the two cells have congruent shape and size �1�. For this
procedure to work, some requirements need to be satisfied
regarding the resonance frequencies and their corresponding
widths. These requirements limit the eigenfrequencies which
are suitable. First, we note that the interval between two
adjacent eigenfrequencies �
 must be significantly larger
than the resonance width �
 due to dissipation. In Table III
the intervals between the first few pairs of adjacent eigenfre-
quencies are shown using the values presented in Table I.
Also shown there are the widths of the peaks in the fre-
quency spectrum, calculated using Eq. �3.8�. Standard con-
ditions of dry air at 300 K and a hexagon edge length of 5
mm were used for the calculation of all the frequencies. Not-
ing that the intervals between adjacent eigenfrequencies di-
minish as the frequency increases, as discussed in Sec. II, we
conclude that the only two eigenfrequencies whose distance
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from each other and from all the other eigenfrequencies is
sufficiently large compared to the relevant peak widths are
the lowest two, i.e., 
11 and 
21.

Another requirement has to do with the leakage of energy
outward via propagating waves. The lateral mode should
have minimal interaction with propagating modes. We note
however that some leakage might in fact be necessary in
order for the oscillations to be detectable. In a real physical
system some energy will always exit from the duct. Never-
theless, we believe that the best lateral mode should have
minimal interaction with propagating modes. In Sec. III we
showed that the lateral mode p11 is the only one which has
no interaction with other propagating modes and thus is the
most suitable one.

Taking into consideration also the results presented in Fig.
2, from which it follows that p11 suffers less dissipation due
to friction with the wall than p21, we conclude that the lateral
mode p11 is the most appropriate mode for monitoring the
construction of a perfect-hexagon comb cell. The expectation
that it is probably easier for insects to produce an acoustic
signal at that frequency than at the higher ultrasonic fre-
quency of the mode p21 only reinforces that conclusion.

From the absolute width �
 of a resonance, we can de-
duce the lifetime 
�1 /�
 of such a freely oscillating state.
Even in the best case, i.e., the p11 resonance, the number in
Table III leads to 
�5 ms. That is probably much too short
to allow for listening to time-dependent beats as a piano
tuner would. Therefore we feel it is more likely that the
hornets or bees actually listen to the pitch or frequency of
those beats. From the measurements reported in Ref. �11�, it
is evident that social hornets use audio frequencies around
200 Hz in order to communicate information. Therefore they
must hear well at those frequencies and could well be able to
judge whether a change in cell construction has increased or
decreased a beat frequency by more than the frequency width
of the p11 peak ��11=�
11 / �2���40 Hz. The hornets could
cope with the short lifetime of these beats �about 5 ms as
shown above� by emitting a long train of ultrasonic pulses.
Alternatively, they could emit a continuous monochromatic
signal, slowly changing its pitch and listening to the change
in response of the driven system when the driving frequency
happens to coincide, up to ��11, with the resonance fre-
quency of one of the adjacent cells.

In measurements of the sound spectrum near a brood
comb of oriental hornets �Vespa Orientalis�, a small but dis-
tinct rise in the background noise was found to occur around
20 kHz �1,11�. Using the results of Sec. II and taking the cell
width, i.e., the distance between opposing edges of the cell,
to be 10 mm �1�, the expected frequency of the p11 mode is
�11=c�11 /2�=2.0165�c /2�a�=19.6 kHz. The increase in
the background sound intensity, which is documented in Ref.
�11�, can be attributed to the acoustic response of the honey-
comb structure. This observation confirms the existence of a
significant acoustic response of the oriental hornet honey-
comb structure at the eigenfrequency of the p11 mode.

The ability of insects to produce sound in the ultrasonic
frequency range is not self-evident and should not be taken
for granted. Therefore, it is encouraging that ultrasonic sound
production capability of honeybees was detected by Spangler
�12�. In that study, which was conducted outside but nearby
to a beehive, the ultrasonic sound waves produced by hon-
eybees �Apis Mellifera L.� during four types of activities
were recorded and their spectrum was analyzed. Spangler
notes that the sound energy in all the recordings reached its
greatest intensity between 30 and 40 kHz. Using the cell
width of a honeycomb constructed by honeybees, namely,
5–6 mm �13�, the frequency of the p11 mode comes out as
�11=35–40 kHz, in good agreement with Spangler’s obser-
vation. Noting that the next eigenstate, i.e., p21, would have a
frequency �11=55–60 kHz, we see that the honeybees do
not produce such high frequencies, in contrast with their
proven ability to produce ultrasound in a narrow band around
the p11 frequency.

V. DISCUSSION, CONCLUSIONS, AND SUGGESTIONS
FOR FURTHER STUDY

We presented and discussed some numerical solutions for
eigenstates of the acoustic equation in an ideal fluid inside a
perfect-hexagon duct. The results were compared with the
closed-form eigenstates of a circular duct which have similar
properties. We discussed the various dissipative mechanisms
in real air in order to find a lower bound for the finite width
of the lateral resonances. We described how the mathemati-
cal and physical properties of the solutions can be utilized by
hornets and bees in order to construct a brood comb with
identical perfect-hexagon-shaped cells and showed, from
purely mathematical and physical considerations, that the
lowest-lying lateral resonance mode, denoted by p11, is best
suited for that application.

The work done by Ishay �11� provides evidence that the
oriental hornet combs in fact have a significant acoustic re-
sponse at a frequency that agrees with our predictions. Nev-
ertheless, more acoustic data are required to further verify
the results shown in Sec. II: measurements of a broader
acoustic spectrum should be performed for a single hexago-
nal cell. Such measurements, if performed with appropriate
equipment, might show more of the resonances that were
calculated numerically in Sec. II. Also, the real peak broad-
ening should be measured since, as mentioned in Sec. II,
only a lower bound for this quantity could be calculated.

TABLE III. Intervals between the first few pairs of adjacent
eigenfrequencies, calculated from the values given in Table I, and
the peak width of the first few eigenfrequencies, calculated using
Eq. �3.8�. Standard material parameters of dry air at 300 K �see Sec.
III for details� were used and the hexagon edge length was taken to
be 5 mm, corresponding to a distance between opposite cell walls of
about 9 mm.

Interval �

�s−1�

Peak width �

�s−1�


21−
11=8.5�104 �
11=239


31−
21=5.8�104 �
21=551


02−
31=389 �
31=859

�
02=579
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The first recorded data of honeybees producing ultrasound
in the appropriate frequency range were presented by Span-
gler �12�. In that paper Spangler describes the mechanism
which allows the honeybees to produce such frequencies. He
also suggested that this ability is used as a means to deter
attacks by wax moths that prey on honeybees. The theory
presented here provides an alternative explanation for this
aptitude. The fact that there is no observed ability of hornets
or bees to detect the ultrasonic sounds does not rebut our
conjecture since, as explained in Sec. IV, the frequency of
the beats themselves is well within their recorded hearing
ability.

As a further test of our theory, we would like to suggest
that a continuous ultrasonic noise be applied while cell con-
struction is under way. We expect that the construction ac-
tivity will be disrupted or undermined by such noise if it is
loud enough to drown out the ultrasonic signals which are
presumably emitted by the hornets or bees engaged in cell
construction. Such tests are currently in progress. Another
important measurement which needs to be made is to deter-
mine the acoustic spectrum inside a brood comb and near a
comb cell while its construction is under way. We would like
to encourage other researchers to perform such measure-
ments.
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